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Abstract. Gause’s principle of competition between two species is studied when one of them is
sterile. We study the condition for total extinction in the niche, namely, when the sterile population
exterminates the native one by an optimal use of resources. A mathematical Lotka–Volterra
nonlinear model of interaction between a native and sterile species is proposed. The condition
for total extinction is related to the initial number Mo of sterile individuals released in the niche. In
fact, the existence of a critical sterile-population value Mc is conjectured from numerical analysis
and an analytical estimation is found. When spatial diffusion (migration) is considered a critical
size territory is found and, for small territory, total extinction exist in any case. This work is
motivated by the extermination agriculture problem of fruit flies in our region.

In ecological systems Gause’s exclusion principle is widely accepted [1–5]. Originally it was
deduced from competition between Paramecium caudatum and Paramecium aurelia [1–3].
Nevertheless, it applies to many other situations. For instance, in [6] it was conjectured that
Neanderthal extinction in Europe was a consequence of Gause’s principle. From a formal
point of view, it states that two competing species cannot coexist in the same ecological niche.
Within this framework, it is assumed that the strong species completely fills the niche and
the weak one disappears (exclusion). We remark that this principle is limited in the sense
that it applies when re-adaptation, migration or genetic changes does not exist. This principle
seems very intuitive in a natural environment or for species in laboratories; but what is the
situation with genetically prepared sterile populations? To be more explicit, consider the
well known problem related to extermination of native fruit flies by genetically sterilized fruit
flies [7, 8]. The two species exist in the same ecological niche when the sterile population is
released. Before the interaction, we assume that the native species fills the niche in a stable
way. In some geographic regions and for optimal initial conditions, native fruit flies can be
exterminated by the sterile population. Namely, in this case both species disappear and the
principle must be reformulated as:

Gause’s principle. Two competing species cannot coexist in the same ecological niche and at
least one of the species will disappear.

Namely, it contains explicitly the possibility of total extinction (of both species). This
formulation of the principle includes all strategies of extermination with genetically altered
species [7, 8].

In this paper we consider a mathematical nonlinear model of competition between a native
species with a number of individuals N(t), and another sterile one with a number of individuals
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Figure 1. A sketch of the critical points associated with equations (1) and (2). Note that no
equilibrium point exists on the M-axis because this population is sterile. When (0, 0) is stable, we
obtain total extinction in accord with Gause’s principle.

given by M(t). Explicitly, we are interested in the mathematical conditions for total extinction
in the ecological niche. This paper is organized as follows. First, we present a predator–
predator nonlinear model for variables N and M (equations (1)–(3)), and a stability analysis.
Numerical simulation confirms the stability analysis and the existence of a threshold Mc where
total extinction exist. We give an analytical estimation of this threshold value (equation (5)).
Near to the critical value, the behaviour of the extinction time τext is studied. This extinction
time is, after our numerical calculation, related to a critical exponent ν (equation (6)). Finally,
the case including diffusion is considered, here we found the existence of a critical size territory
Lc were total extinction holds (for any initial condition of the species M). Some possible
generalizations are stressed at the end of the paper.

To be explicit, consider the Lotka–Volterra-type evolution equations with the interaction

dM

dt
= −α′M − δNM (1)

dN

dt
= NF(N) − δNM (2)

where α′ is the death rate of the sterile population, δ is the interaction parameter and the
function F(N) describes the population growing of the native species when interaction does
not exist. For instance, when F(N) = α −N (α is a constant) we obtain the usual Verlhust, or
logistic, equation. Note that the stability of the point (N = 0, M = 0) depends on the sign of
F(0). In fact, when F(0) < 0 this point becomes stable and the possibility of total extinction
exists in accordance with Gause’s principle. Moreover, this condition of stability of (0, 0)

seems reasonable if we think that species needs a minimal social structure, or genetic diversity,
to survive (i.e. a minimal number of individuals). We stress that the dynamical systems (1)–
(3) is irreversible, for instance, a Lyapounov function L associated with the systems is just
L = M(t).

To carry out explicit calculations we consider the model where

F(N) = (α − N)(N − β) (3)

with α and β positive parameters (α < β). Since F(0) < 0, the point (N = 0, M = 0) is
stable and total extinction would be expected. The linear analysis of (1)–(3) shows that the
point (N = α, M = 0) is unstable (saddle) and (N = β, M = 0) is a stable focus. Figure 1



Gause’s exclusion principle revisited 4879

Figure 2. A numerical simulation of equations (1)–(3). The native population N(t) can be
exterminated by an appropriate choice of the initial-value population Mo for the sterile population.
In the figure we have five initial value for Mo. The critical value to complete extinction is Mo ∼ 270
in good accord with our conjecture (4). The parameters are α = 30, β = 50, δ = 1 and α′ = 35.
The sterile population M is released at to = 100 (arbitrary units).

shows the stability diagram for our equations. So, the sterile population M disappears and,
depending on the initial conditions, total extinction would exist in the niche. Namely, the
systems has two attractors, the first (0, 0) related to total extinction and the other (β, 0) related
to survival of species N .

The explicit question that we are concerned with here is as follows. If initially the native
species number is N = β (a stable point without interaction) then, after Mo sterile individuals
have been released, when do we have total extinction? Namely, before the interaction, the
native species is in the niche in a stable way. After, Mo sterile individuals are released and the
interaction process produces a competitive struggle. Here we ask about the minimal population
Mo of sterile individuals producing total extinction in the niche. In fact, if the sterile population
is not enough then they die and total extermination does not occur.

Numerical calculations confirm the existence of a critical value Mc and when Mo > Mc

total extinction exists in the niche. Figure 2 shows the time behaviour of N(t) for different
initial value Mo, of the sterile species released in the niche. There is a critical value for the
initial condition Mo related to total extinction. A criterion for total extinction is dependent on
the initial number in the sterile population Mo and is given by

Mo > 2.7
(α − β)2

4δ
. (4)

This criterion is established as follows: from (1) and (3), we have that M(t) =
exp

(−α′ − δ〈N〉t
)
t , where 〈N〉t = (1/t)

∫ t
N(τ) dτ . When T → ∞, i.e. small t , and

assuming total extinction, we expect an exponential decaying behaviour for M . So, an
important fraction of the decaying process, assumed to be slow, is reached when M ∼ Moe−1.
If now we stress that no other stationary point (excepting (0, 0)) exists in (2), we obtain the
criterion (4). We have used the maximum value of the function F(N) given by (3). We remark
that this is a coarse criterion, nevertheless, it works in accord with our numerical simulations.
For instance, figure 2 describes extinction when Mo > 270 in accordance with (4). This is also
true for other parameter values. The criterion (4) can be generalized easily to a system with
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Figure 3. The final distribution of the native population N for different initial conditions Mo of
the sterile population. The existence of a critical value Mc, separating survival and extinction, is
clearly shown. The parameters are the same as in figure 2.

arbitrary distribution F(N) in (1) and (2). Namely, by imposing the inequality Fmax < δMoe−1

(with e ∼ 2.7).
Figure 3 shows a simulation of the final native population N(t = ∞) for different initial

conditions Mo of the sterile population. Clearly there is a critical value Mc which separates the
survival and extermination regime. From equation (4), a first approximation for this critical
value is

Mc ∼ 2.7
(α − β)2

4δ
. (5)

Moreover, figure 2 suggests that near to this critical value the extinction time τext depends
on (Mo − Mc). This is so because when Mo → M+

c the extinction time must be infinity.
Explicitly we expect a behaviour like

τext ∼ 1

(Mo − Mc)
ν Mo > Mc (6)

where ν is an unknown parameter. The evaluation of this critical exponent requires
computational work which is beyond of the scope of this paper. It will be done elsewhere.
The conjecture (6) is reinforced by numerical calculation. In fact, using the same parameter
values as in figure 2, and the definition

τ−1
ext = −1

t
lim
t→∞ ln(N(t)/β) (7)

we see that the existence of the critical exponent ν is confirmed numerically (figure 4).
Now we discuss briefly the incorporation of migration into the set of evolution equations (1)

and (2). In fact, total extermination could also be carried out by a diffusion process. In some
cases unstable points become stable by diffusion in limited territories. Thus in a model where
(0, 0) is unstable, i.e. only one species survives, diffusion would change this instability and
total extinction takes place. We add the diffusion terms DM

∂2M
∂x2 and DN

∂2N
∂x2 to (1) and (2),

respectively. Namely, consider the pair of reaction–diffusion evolution equations

dM

dt
= −α′M − δNM + DM

∂2M

∂x2
(8)
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Figure 4. The extinction time τext , for different initial conditions Mo, showing the transition. This
numerical result seems to be in accord with our hypothesis (6) and is related to the existence of a
critical exponent ν.

dN

dt
= NF(N) − δNM + DN

∂2N

∂x2
. (9)

The linear analysis of stability for the stationary point (0, 0) can be done in the usual way,
namely, consider the small perturbation

M = 0 + η (10)

N = 0 + ε (11)

where the variables η and ε are assumed to be small. Equations (8) and (9), give the first-order
linear equations

∂η

∂t
= −α′Mη + DM

∂2η

∂2x
(12)

∂ε

∂t
= F(0)ε + DN

∂2ε

∂2x
(13)

where we assume F(0) > 0, corresponding to the unstable case when migration is not present.
For a finite territory, solutions such as ε ∼ eωt sin kx can be visualized. The relationship
between the stability parameter ω and the wavenumber k is given by

ω = F(0) − k2DN (14)

and clearly for k >
√

F(0)/DN the point (0, 0) becomes stable and total extinction in the niche
exists. Since k ∼ 1

L
, with L the territory size, equation (14) defines a critical size territory

Lc ∼ √
DN/F(0) where total extinction holds. Namely, for any sized territory with L < Lc

total extinction exists.
In conclusion, Gause’s principle was generalized to consider the case of the biological

struggle when one competing species is sterile. In fact, under appropriate conditions, total
extinction could occur in the niche. Most agricultural competitive extermination methods
are carried out assuming this principle. For instance, this is the case of the extermination
programme of fruit flies with sterile flies irradiated in laboratories [9, 10]. We have presented
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a simple model which has total extinction in the niche in some cases. Conjectures related to
a critical sterile population (number of individuals) producing total extinction were pointed
out with a coarse criterion (4). This conjecture is based on our numerical simulation of the
model. The role of migration was briefly discussed and the possibility of total extinction from
diffusion was also explored for small territories.

To end, we note that our model can be extended to incorporate some modifications.
Particularly we are thinking about generalizations such as:

(a) Periodic variation of coefficients. In fact, in the extinction fruit flies programmes, daily,
seasonal or El Niño (ENSO) oscillations must be considered.

(b) Sexual selection. Many extermination programs are based on sexual selection, namely, a
sterile male released in a given niche. It creates interaction between the sterile male and
fertile female which becomes directly related to the evolution of the native male. Such
models require a phase-space which is greater than two.

(c) Many random factors are present in a real niche; for instance, humidity, temperature, wind,
etc. These factors can be incorporated into our model by introducing adequate stochastic
process for the parameter (α, β or δ).
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